1,875 research outputs found

    Improving Requirements Engineering within the European Space Industry

    Get PDF
    International audienceThe Next Generation Requirements Engineering (NextGenRE) (ESA/ESTEC Contract 4000101353/10/NL/SFe) project seeks to identify possibilities to improve the requirements engineering process within the European Space industry in connection with Model-based System Engineering (MBSE)

    Hormone-regulated expression and distribution of versican in mouse uterine tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Remodeling of the extracellular matrix is one of the most striking features observed in the uterus during the estrous cycle and after hormone replacement. Versican (VER) is a hyaluronan-binding proteoglycan that undergoes RNA alternative splicing, generating four distinct isoforms. This study analyzed the synthesis and distribution of VER in mouse uterine tissues during the estrous cycle, in ovariectomized (OVX) animals and after 17beta-estradiol (E2) and medroxyprogesterone (MPA) treatments, either alone or in combination.</p> <p>Methods</p> <p>Uteri from mice in all phases of the estrous cycle, and animals subjected to ovariectomy and hormone replacement were collected for immunoperoxidase staining for versican, as well as PCR and quantitative Real Time PCR.</p> <p>Results</p> <p>In diestrus and proestrus, VER was exclusively expressed in the endometrial stroma. In estrus and metaestrus, VER was present in both endometrial stroma and myometrium. In OVX mice, VER immunoreaction was abolished in all uterine tissues. VER expression was restored by E2, MPA and E2+MPA treatments. Real Time PCR analysis showed that VER expression increases considerably in the MPA-treated group. Analysis of mRNA identified isoforms V0, V1 and V3 in the mouse uterus.</p> <p>Conclusion</p> <p>These results show that the expression of versican in uterine tissues is modulated by ovarian steroid hormones, in a tissue-specific manner. VER is induced in the myometrium exclusively by E2, whereas MPA induces VER deposition only in the endometrial stroma.</p

    Building a Credible Case for Safety: Waymo's Approach for the Determination of Absence of Unreasonable Risk

    Full text link
    This paper presents an overview of Waymo's approach to building a reliable case for safety - a novel and thorough blueprint for use by any company building fully autonomous driving systems. A safety case for fully autonomous operations is a formal way to explain how a company determines that an AV system is safe enough to be deployed on public roads without a human driver, and it includes evidence to support that determination. It involves an explanation of the system, the methodologies used to develop it, the metrics used to validate it and the actual results of validation tests. Yet, in order to develop a worthwhile safety case, it is first important to understand what makes one credible and well crafted, and align on evaluation criteria. This paper helps enabling such alignment by providing foundational thinking into not only how a system is determined to be ready for deployment but also into justifying that the set of acceptance criteria employed in such determination is sufficient and that their evaluation (and associated methods) is credible. The publication is structured around three complementary perspectives on safety that build upon content published by Waymo since 2020: a layered approach to safety; a dynamic approach to safety; and a credible approach to safety. The proposed approach is methodology-agnostic, so that anyone in the space could employ portions or all of it

    An Operando Investigation of (Ni-Fe-Co-Ce)O_x System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction

    Get PDF
    The oxygen evolution reaction (OER) is a critical component of industrial processes such as electrowinning of metals and the chlor-alkali process. It also plays a central role in the developing renewable energy field of solar-fuels generation by providing both the protons and electrons needed to generate fuels such as H_2 or reduced hydrocarbons from CO_2. To improve these processes, it is necessary to expand the fundamental understanding of catalytically active species at low overpotential, which will further the development of novel electrocatalysts with high activity and durability. In this context, performing experimental investigations of the electrocatalysts under realistic working regimes, i.e. under operando conditions, is of crucial importance. Here, we study a highly active quinary transition metal oxide-based OER electrocatalyst by means of operando ambient pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy performed at the solid/liquid interface. We observe that the catalyst undergoes a clear chemical-structural evolution as a function of the applied potential with Ni, Fe and Co oxy-hydroxides comprising the active catalytic species. While CeO_2 is redox inactive under catalytic conditions, its influence on the redox processes of the transition metals boosts the catalytic activity at low overpotentials, introducing an important design principle for the optimization of electrocatalysts and tailoring of novel materials

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. The paper presents the CONTREX European project and its preliminary results. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels

    Intercultural Mentoring tools to support migrant integration at school (INTO)

    Get PDF
    [ES] Within the scope of European policies and to combat educational disadvantages for migrant children, numerous actions have been taken to improve the position of migrant children in education. In secondary education the emphasis lies on diversification of the offered teaching methods and extra guidance of the pupils. Some schools in Europe have set up measures to increase the continuity of the educational support in terms of migrant pupil inclusion and orientation. Despite these measures, dropout rates are still high among migrant youth and compared to their native peers a disproportionately large number attend the lowest levels of secondary school after completing primary school. The disappointing results of regular guidance are partly the reason for the development of more innovative forms of guidance. The project aims to promote strategies and methods that help students with a migrant background at risk of ESL to maintain their motivation through the development, testing and validation of an Intercultural Mentoring Programme based on the empowered peer education methodology.The Intercultural mentor profile will be adapted to different European contexts, developed in collaboration with at least 100 school staff members (headmaster and secondary school teachers from 5 different European countries) and tested with at least 50 students with a migrant background trained as Intercultural Mentors. The impact of the project will be sustained thanks to its outcomes: (i) Didactic Kit: conceived as self-teaching materials will contain the training framework to directly implement the model of intervention in secondary schools system; (ii) Guideline Handbook: support the future implementation of training courses – by other education organizations and secondary school, (iii) Project website: it will include not only the results and materials of the project (handbooks, e-learning platform, reports, etc.) but will also include updated information on young migrants

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels. This article presents an overview of the CONTREX European project, its main innovative technology (extension of a model based design approach, functional and extra-functional analysis with executable models and run-time management) and the final results of three industrial use-cases from different domain (avionics, automotive and telecommunication).The work leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2011 under grant agreement no. 611146

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore